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Highlights
Mitochondrial outer membrane per-
meabilization (MOMP) is no longer
considered an exclusively lethal
event. Incomplete MOMP and minor-
ity MOMP are biologically important
exceptions to the all-or-nothing view-
point. These examples of sublethal
MOMP provide insight into the true
complexity of apoptosis regulation.

Sublethal MOMP generates the drug-
tolerant persister (DTP) phenotype
Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic can-
cer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a crit-
ical, regulated step in this apoptotic pathway. The residual cancer cells that
survive treatment serve as the seeds of eventual relapse and are often function-
ally characterized by their transient tolerance of multiple therapeutic treatments.
New studies suggest that, in these cells, a sublethal degree of MOMP, reflective
of incomplete apoptotic commitment, is widely observed. Here, we review recent
evidence that this sublethal MOMP drives the aggressive features of residual
cancer cells while templating a host of unique vulnerabilities, highlighting how
failed apoptosis may counterintuitively enable new therapeutic strategies to tar-
get residual disease (RD).
through both caspase-independent
and caspase-dependent signaling
pathways. Cytochrome c is the pri-
mary factor triggering these cellular
changes by activating the integrated
stress response (ISR) and the cas-
pase cascade.

Sublethal MOMP offers therapeutic
opportunities in the DTP state. Direct
targeting of the regulators of the sub-
lethal MOMP, ISR, or DNA damage
response pathways may prevent
cells from entering the persister
state. Downstream of sublethal
MOMP, acquired cellular dependen-
cies, such as ferroptosis, emerge
and can be therapeutically targeted.
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Sublethal apoptotic cell death contributes to cancer therapy resistance
Cancer therapeutics including chemotherapy [1–3], radiotherapy [4], and targeted therapy [5,6]
often utilize apoptosis as an effector pathway to eliminate tumor cells. Although these cytotoxic
agents result in impressive initial clinical responses, the emergence of therapy resistance is a
significant complication that prevents cancer patients from achieving cures from their disease
[7]. Therapy resistance is known to occur through diverse genetic and non-genetic mecha-
nisms, which include the selection of pre-existing genetic mutations in the population [8],
tumor microenvironment (TME) interactions [9], and cell state plasticity [10]. Recently it was
discovered that cells can survive partial engagement of apoptotic cell death [11–15] and that
sublethal apoptosis is a novel mechanism of resistance to cytotoxic therapy [16,17]. In this
review we define the molecular mechanisms of sublethal apoptosis and discuss how it directly
and indirectly contributes to a therapy-resistant state. We then highlight the therapeutic oppor-
tunities that sublethal apoptosis creates, which may inform mechanism-based treatment
strategies to overcome drug resistance.

Understanding sublethal MOMP
An introduction to MOMP
Apoptosis is a fundamental biological process that eliminates undesirable or aberrant cells
through a dedicated cell death mechanism [18]. In normal physiology, apoptotic cell death main-
tains tissue homeostasis and development [19,20]. Various disease states, including cancer, are
known to modify the ability of cells to die [21,22]. Apoptosis occurs through two primary mech-
anisms: the mitochondrial (or intrinsic) pathway and the death receptor (or extrinsic) pathway
[23]. Intrinsic apoptosis is triggered by diverse cellular stressors, including reactive oxygen
species (ROS), growth factor deprivation, DNA damage, microtubule disruption, endoplasmic
reticulum (ER) stress, and others, resulting inMOMP (see Glossary) [22]. Another pathway of ap-
optosis occurs due to the ligation of the so-called death receptors (e.g., Fas/CD95, TRAIL recep-
tors, TNFR1) of the TNF receptor superfamily. In some vertebrate cells, this extrinsic apoptotic
pathway also requires MOMP for cell death to occur [24].
Trends in Cell Biology, Month 2023, Vol. xx, No. xx https://doi.org/10.1016/j.tcb.2023.07.005 1
© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.tcb.2023.07.005
CellPress logo


Trends in Cell Biology

Glossary
Drug-tolerant persister (DTP): a
population of cells that survive cytotoxic
stress events through non-mutational
mechanisms and are thought to
contribute to the clinical phenomenon of
MRD.
Integrated stress response (ISR): a
signaling pathway that is activated
following cellular stress events that
include viral replication, heme
deprivation, ER stress, and nutrient
depletion. ATF4 is one of the major
transcription factors translated following
ISR activation and promotes the
expression of a stress-response gene
program to protect the cell.
Minimal residual disease (MRD): the
minority fraction of cancer cells that
survive in the body during and after a
patient achieves clinical remission.
Mitochondrial outer membrane
permeabilization (MOMP): a defining
step in the intrinsic apoptosis pathway
that is characterized by pores forming in
the OMM allowing the diffusion of
mitochondrial IMS proteins, including
cytochrome c, into the cytosol, which
triggers caspase activation and protein
substrate cleavage.
Sublethal MOMP: engagement of
MOMP in amanner that is not fatal to the
cell.
MOMP is caused and tightly regulated by the BCL-2 protein family, which are identified by the
presence of one to four BCL-2 homology (BH) domains [25]. The BCL-2 family includes pro-
and antiapoptotic proteins. When activated, the BCL-2 effector proteins (e.g., BAX, BAK) form
pores or openings in the outer mitochondrial membrane (OMM), resulting in MOMP. The
antiapoptotic BCL-2 proteins (e.g., BCL-2, BCL-xL, MCL-1) prevent this effector-mediated
MOMP.

A third class Is the BH3-only proteins (so named because they contain only this domain), which
function to regulate the other two classes, either by inhibiting the antiapoptotic proteins
(‘sensitizers’) or by directly activating the effectors (‘activators’).

Antiapoptotic BCL-2 family proteins contain all four BH domains and exert their antagonistic ef-
fects through the sequestration of proapoptotic activators and the direct binding of active BAX
and BAK to prevent pore formation in the OMM [26].

OnMOMP, proteins of the mitochondrial intermembrane space (IMS), are released to the cytosol.
These include cytochrome c, which triggers the activation of caspase proteases responsible for
the features of apoptosis [27]. Even without caspase activation, extensive MOMP can doom a
cell to die due to a general failure of mitochondrial function [28].

Cellular determinants of MOMP
The relative cellular activities of proapoptotic versus antiapoptotic BCL-2 family proteins deter-
mine the baseline susceptibility of a cell to the triggering of MOMP following exposure to apoptotic
stimuli [29]. Cells are classified across a continuous spectrum of ‘apoptotic priming’ based on
their propensity to successfully engage MOMP on treatment with apoptotic stimuli [30]. For ex-
ample, cells that rapidly release cytochrome c from mitochondria on treatment with apoptotic
stimuli are considered highly ‘primed’ for apoptosis. The degree to which a cell is primed for
MOMP is correlated with clinical responsiveness to cytotoxic therapies across cancer types
[1–4,31]. An emerging body of research has revealed that apoptotic priming is dictated by both
cellular features (mitochondrial size and shape, oncogenic mutations, cell lineage of origin, differ-
entiation status, and metabolic state) and imposed conditions, such as prior exposure to drug
therapies and TME interactions, which together determine the cell’s propensity to undergo
MOMP in response to treatment [32–34].

Mechanisms of sublethal MOMP
MOMP was initially thought to be an all-or-nothing event [35]. Early studies found that if a cell
reached its apoptotic threshold, MOMP would be ‘widespread and irreversible’, releasing IMS
contents from every mitochondrion rapidly and completely. It was thus believed that MOMP
was often a lethal event. Nonetheless, biologically significant exceptions to the all-or-nothing
viewpoint were discovered. Specific post-mitotic cell types, including oligodendrocytes, cardio-
myocytes, and neurons, can survive MOMP through intrinsic resistance mechanisms such as
heightened ability to retain mitochondrial membrane potential following cytochrome c release
[36,37]. Caspase-3 and downstream CAD activity were even found to be required for myoblast
differentiation, which suggests a potential developmental role for sublethal MOMP [38,39].

It was discovered that if only some mitochondria in a cell undergo MOMP, the effect can be sub-
lethal [12,14,15]. Two forms of sublethal MOMP are incomplete MOMP and minority MOMP, de-
fined by the extent of MOMP (Figure 1). Incomplete MOMP is the process in which most
mitochondria undergo MOMP following exposure to an apoptotic stimulus but the cell retains a
fraction of undisturbed mitochondria. If caspase activity is inhibited, cells can sometimes survive
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Figure 1. Molecular mechanisms of sublethal mitochondrial outer membrane permeabilization (MOMP).
Extrinsic or intrinsic cytotoxic stressors to a cell can cause various mechanisms of MOMP. Complete MOMP occurs when
there is widespread and irreversible MOMP across the mitochondrial network. In the case of complete MOMP, the cell
demonstrates the hallmark features of apoptosis, including caspase activation, membrane blebbing, and nuclear
fragmentation before death. Incomplete MOMP is defined by many, but not all, mitochondria in MOMP following a
cytotoxic event and is promoted by caspase inhibition. The classical markers of apoptosis are absent in incomplete
MOMP as caspases are necessary for their activation. Minority MOMP is when a small fraction of the mitochondria
activate MOMP following a cytotoxic insult. A sublethal amount of caspase activity is found in minority MOMP. Incomplete
MOMP and minority MOMP are not lethal to the cell and are classified as sublethal MOMP mechanisms.
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incomplete MOMP through repopulation with residual, unprimed mitochondria, especially in cells
that retain GAPDH expression [14,15]. Minority MOMP, by contrast, occurs when only a minority
fraction of a cell’s mitochondria undergo MOMP following exposure to an apoptotic stimulus [12].
Minority MOMP leads to the release of cytochrome c and other apoptotic IMS factors, but in
quantities small enough to not necessarily be fatal to the cell. Sublethal release of cytochrome
c following minority MOMP was found to activate caspases and caspase-dependent DNases
(CADs), resulting in DNA damage and genomic instability [12,13]. Similarly, sublethal caspase ac-
tivation in response to death receptor signaling has been shown to induce CAD-dependent DNA
damage and genomic instability [40,41].

Mitochondrial dynamics regulate the extent of MOMP by modulating the distribution of
antiapoptotic BCL-2 proteins across the mitochondria [42]. Mitochondrial fusion promotes com-
plete MOMP by providing a homogeneous distribution of apoptotic effector BCL-2 proteins
across the mitochondrial network. By contrast, mitochondrial fission promotes sublethal
MOMP by producing fragmented mitochondria with uneven BCL-2 protein representation [42].

Anastasis (‘rising to life’ [11,43]) is a phenomenon in which cells survive and even reverse the
effects of caspase activation, including apoptotic blebbing and phosphatidylserine exposure, fol-
lowing the removal of some cytotoxic stressor [44,45]. It is defined by demonstrable, sublethal
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caspase activation, and therefore the term can be applied to at least some cases of sublethal
MOMP. However, as caspase activation can occur independent of MOMP, it follows that
anastasis can occur independent of sublethal MOMP.

Although this review focuses primarily on sublethal engagement of apoptosis, other modes of
regulated cell death (e.g., necroptosis, pyroptosis, ferroptosis) might also occur at nonlethal levels
[46]. The phenotypic ramifications of nonlethal activation of these alternative modes of cell death
in cancer are an area of biology requiring further scientific investigation.

Sublethal MOMP is observed in drug-tolerant persister (DTP) cells
An introduction to DTPs
Minimal RD (MRD) describes the reservoir of tumor cells that fail to undergo drug-induced cell
death in a patient with clinical remission. These cells represent the seeds of eventual relapse [47].
While MRD can occur due to the selection of a pre-existing, genetically resistant population of
cells, sequencing studies have shown that non-genetic mechanisms of tumor cell survival in
MRD occur [48–51]. Cell-autonomous non-genetic survival involves the entry of tumor cells into
a DTP state, named based on a related phenomenon in antibiotic-tolerant (persister) bacterial
cells [52,53].

The DTP state provides a non-mutational mechanism for cells to survive normally lethal events
and is associated with diverse epigenetic, transcriptional, and metabolic reprogramming pro-
cesses [48]. Characteristics of DTPs include reduced replication, hypermutability, altered cellular
metabolism, multidrug resistance, and epithelial-to-mesenchymal transition (EMT), and these
characteristics are found in DTPs across cancers lineages and drug classes [48]. All of the cardi-
nal features of DTPs are reversible once drug treatment is withdrawn. Barcoding experiments
have supported a stochastic model of DTP formation, in which any given cell in a tumor popula-
tion may have an equal potential to enter the DTP state [49–51], but the stochastic model of DTP
formation may be context specific, as pre-existing populations have been identified to give rise to
dormant drug-tolerant states [54]. The mechanisms underlying the formation of DTPs remain to
be fully elucidated and may be specific to both drug class and cancer lineage [54]. Recent
work revealed that persisters that re-enter the cell cycle and begin to proliferate are derived
from a distinct lineage compared with non-cycling persister populations [51]. Cycling persisters
have a unique metabolic profile that includes increased antioxidant defense genes and a meta-
bolic switch to fatty acid oxidation [51]. Induction of the DTP state following chemotherapy treat-
ment resulted in a transcriptional program resembling the survival program diapause, which is a
reversible state of suspended embryological development following a stress event [49,50]. An-
other transient feature of DTPs is their increased vulnerability to agents that inhibit the lipid perox-
idase GPX4, resulting in cell death by ferroptosis [48,55,56]. DTP cells downregulate the reducing
cofactors NADPH and glutathione (GSH), which is to likely to contribute to this vulnerability [55].

From this perspective, pharmacological targeting of DTP cells may provide therapeutic opportu-
nities to prevent relapse by eliminating the pool of MRD tumor cells [57], underscoring the vital im-
portance of understanding the biological drivers and vulnerabilities of the DTP state.

Identification of sublethal MOMP in DTPs
The fact that DTP cells derived from different tumor lineages and drug treatments exhibit a re-
markable convergence of cardinal phenotypic properties suggests that these properties may
have a common origin. Given that the vast majority of cancer therapies lead to engagement of
the apoptotic pathway, and that DTP cells are defined by their transient resistance to drug-
induced cell death, it is reasonable to imagine that sublethal MOMP could be a conserved feature
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of these cells. Two separate reports recently observed sublethal MOMP in DTP cancer cells and
provided evidence that it drives key phenotypic properties and therapeutic vulnerabilities of these
cells [16,17]. In the first, lung cancer cells treated with a combination of BH3 mimetic drugs
targeting BCL-2, BCL-xL, and MCL-1 (using the BCL-2 and BCL-xL inhibitor ABT-737 plus the
MCL-1 inhibitor S63845) were found to induce a persister phenotype as defined by reduced
cell cycling, reversible chemoresistance, sensitization to ferroptosis, an EMT gene signature,
and increased metastatic potential [16]. The persister phenotype in these cells depends on
BCL-2 effector proteins, as cells lacking the BCL-2 effector proteins did not demonstrate per-
sister properties following BH3-mimetic treatment [16]. Single-cell RNA-seq analysis of these
cells revealed activation of the integrated stress response (ISR) as a reversible feature of the
persister state [16]. Sublethal MOMP was found to enable the release of cytochrome c into the
cytosol, where it directly binds to and activates heme-regulated inhibitor (HRI) kinase to initiate
the downstream translation of activating transcription factor 4 (ATF4) (Figure 2). Cytochrome
c, HRI, and ATF4 were all necessary for the DTP phenotype in this setting, and this signaling
axis was independent of caspase activation [16]. Finally, engagement of the ISR was found to
be sufficient to produce the persister phenotype independent of sublethal MOMP. In the second
report, cellular models of non-small cell lung cancer (NSCLC), melanoma, acutemyeloid leukemia
TrendsTrends inin Cell BiologyCell Biology

Figure 2. Sublethal mitochondrial outer membrane permeabilization (MOMP) promotes integrated stress
response signaling and DNA damage. The release of cytochrome c from the intermembrane space (IMS) through BAX
and BAK into the cytoplasm triggers the caspase-independent pathway of heme-regulated inhibitor (HRI)–EIF2α–activating
transcription factor 4 (ATF4) and the caspase cascade. Direct binding of cytochrome c to HRI triggers its activation and
downstream phosphorylation of EIF2α. Phospho-EIF2α inhibits global translation and stimulates ATF4 translation. ATF4 initiates
transcription in a set of genes involved in the stress response. Activated apoptotic caspases facilitate the release o
endonuclease G (EndoG) from the IMS. Inhibitor of caspase-activated DNase (CAD) (ICAD) is cleaved by caspases, which
allows the activation of CAD through homodimerization. CAD and EndoG are DNases that introduce DNAbreaks in genomic DNA
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(AML), and pancreatic ductal adenocarcinoma (PDAC) surviving treatment with their cognate
oncogene-targeted therapies were found to exhibit DNA damage marked by phosphorylation
of ataxia-telangiectasia mutated protein (p-ATM) and gamma H2A histone family member X
(γ-H2AX) [17]. This therapy-induced DNA damage depended on activation of the proapoptotic
factors BIM (an activator BH3-only protein) and BAX. Specifically, BAX-dependent sublethal
MOMP led to the release of cytochrome c, activating downstream effector caspases and CAD-
mediated damage. DTPs generated from targeted therapy treatment were eradicated by genetic
or pharmacological inhibition of ATM. This finding is likely to reflect the requirement for DTP cells
to resolve toxic double-strand breaks (DSBs) caused by sublethal MOMP and CAD activation
(Figure 2) [17]. Interestingly, the results of these studies were corroborated by another recent re-
port identifying an ATF4 dependency and increased rates of DNA damage in drug-tolerant
melanoma cells [58].

Together, these findings illustrate the critical role of sublethal MOMP in shaping the formation and
vulnerabilities of DTP cells. While evidence suggests that DTP formation may not always require
sublethal MOMP [54], we speculate that it may be a common driver of this state in response to
diverse drug treatments provided the treatment engages apoptosis [1–6].

These findings also prompt consideration of the broader ISR and its relationship to sublethal
MOMP. The ISR is an adaptive signaling pathway activated in response to diverse cellular
stressors. Extrinsic stressors include viral infection, heme deprivation, and nutrient depletion,
activating any of three kinases (PKR, HRI, and GCN2, respectively). ER stress results from an
accumulation of unfolded proteins in an intrinsic source of ISR activation via the kinase PERK
[59]. In cancer, specific oncogenic pathways are known to hijack the ISR for tumor-promoting
effects [59]. Activation of caspases may occur with or without MOMP and can also contribute
to ISR signaling through proteolytic activation of PKR [60]. Therefore, while sublethal MOMP en-
gages the ISR and promotes caspase activation and DNA damage, there are other ways these
features can be engaged in stressed cells. Nevertheless, as many cancer therapies engage the
mitochondrial pathway of apoptosis [1–6], it follows that sublethal MOMP-driven ISR activation
may be a general feature of DTP generation and, therefore, a unifying concept underlying the
persister phenomenon.

Sublethal MOMP shapes the DTP state
As previously described, DTP cells across cancer lineages contain the shared qualities of slowed
cell cycling, induction of genes associated with EMT, multidrug tolerance, sensitization to
ferroptosis, and increased mutability [48]. In the following section, we highlight the possible role
of sublethal MOMP in fostering these phenotypic traits (Figure 3).

Sublethal MOMP inhibits cellular proliferation
Sublethal MOMP-enabled release of cytochrome c directly activates HRI-ATF4 to slow cell cy-
cling, associated with inhibition of the mammalian target of rapamycin (mTOR) growth signaling
pathway. PC9 persister cells exhibit a downregulated mTOR gene signature dependent on
BCL-2 effectors and ATF4 [16]. HRI/ATF4 signaling has previously been linked tomTOR inhibition
in various settings. One group identified that oligomycin treatment increased Sestrin2 and Redd1,
known repressors of the mTOR signaling complex, in a HRI/ATF4-dependent manner [61]. The
inhibition of mTOR by ATF4 through Sestrin2 was also identified in cancer cells treated with
multiple ER stress agents [62,63]. Serum starvation and glucose depletion similarly led to
ATF4-dependent activation of Redd1 and Sestrin2, respectively, which inhibited mTOR in
these contexts [64,65]. Finally, HRI/ATF4 signaling has also been shown to inhibit mTOR signal-
ing through growth factor receptor-bound protein 10 (Grb10) activation in erythroid progenitor
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Figure 3. Contributions of sublethal mitochondrial outer membrane permeabilization (MOMP) to the drug-
tolerant persister (DTP) state. Sublethal MOMP promotes the phenotypic characteristics of the persister state through
activating transcription factor 4 (ATF4)- and DNase-dependent signaling events. ATF4 signaling triggers epithelial-to-
mesenchymal transition (EMT), metastasis, multidrug resistance (MDR), ferroptosis sensitization, and slowed cellular
proliferation in persister cells. Caspase-activated DNase (CAD) and endonuclease G (EndoG) may inhibit cellular
proliferation and adaptive mutability by introducing DNA damage and genomic instability in the persister cells.

Trends in Cell Biology
cells [66]. Altogether, the activation of ATF4 by sublethal MOMP is a potent mechanism to nega-
tively regulate cell proliferation by inhibiting mTOR.

Increased DNA damage may provide a secondary mechanism to slow cellular growth under
conditions of sublethal MOMP. CAD activity in cells experiencing sublethal MOMP is known to ac-
tivate DNA DSBs that result in genomic instability and the DNA damage response (DDR)
[12,13,17,67]. Breast cancer and sarcoma cell lines treated with mitotic inhibitors stimulated sub-
lethal MOMP, which led to cell-cycle arrest through CAD-dependent DNA damage, activation of
p53, and induction of p21 [68,69]. BH3-mimetic-treated renal cell carcinoma cells also exited the
cell cycle following sublethal MOMP-dependent DNA damage [70]. Cell cycling is known to stall
during the repair of DSBs until DNA repair effector proteins appropriately fix the lesion [71] and
cells may permanently exit the cell cycle during DSB repair through the p53-induced expression
of p21 [72]. Although the heterogeneity of cell-fate outcomes following DSBs is not fully eluci-
dated, it was found that the amplitude of ATM- and Rad3-related (ATR)-dependent checkpoint
signaling is associated with cell-cycle exit [73]. The DNA damage created in cells undergoing sub-
lethal MOMP alters their ability to complete the cell cycle successfully and may contribute to
slowed cellular proliferation in the persister state [68,69].

Sublethal MOMP contributes to EMT and metastasis
The ISR can stimulate EMT and promote metastases [74]. Phosphorylation of eIF2α via PERK
was shown to be constitutively active in cells undergoing EMT and PERK-induced ATF4 expres-
sion drove themetastatic potential in EMT cells, as inhibition of this axis decreased the cells’ ability
to form in vitro tumorspheres, migrate, and establish in vivo lung tumors following tail-vein injec-
tion [75]. Microarray data from breast, colon, gastric, and lung cancer patients showed a strong
correlation between EMT genes and ATF4-targeted genes [75].CREB3L1, a target gene of ATF4,
was identified as a driver of the ATF4-dependent increased metastatic potential in EMT cells [76].
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 7
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The Initiation of EMT in persister cells is thought to contribute to tumor invasiveness, metastasis,
chemoresistance, and immune escape [48,77,78]. BH3-mimetic-induced PC9 persister cells ex-
hibit an enriched EMT gene signature and increased metastatic potential in a manner dependent
on sublethal MOMP. Over time, this EMT signature reverted to parental levels [16]. Moreover, the
activation of ATF4 by sublethal MOMP was the driving force for the induction of EMT genes and
their enhanced metastatic capacity [16]. This work implicates the ISR, resulting from sublethal
MOMP, as a driver of EMT and metastasis in persister cells. Besides the ISR, sublethal MOMP
can increase melanoma invasiveness and metastatic capacity through JNK–AP1 signaling in a
caspase-independent manner [79].

Sublethal MOMP promotes chemoresistance
As cells enter the persister state following drug treatment, they resist the primary therapy and
other drug classes [48]. EGFR-mutant PC9 persister cells generated following epidermal growth
factor receptor (EGFR) inhibitor treatment were found to be insensitive to cisplatin chemotherapy,
suggesting that the resistance mechanism is not drug-class specific [53]. The activation of the
ISR by sublethal MOMP was found to promote multidrug resistance in persister cells [16].
BH3-mimetic-induced EGFR-mutant PC9 persister cells, for example, were shown to be revers-
ibly resistant to the primary BH3-mimetic therapy and an EGFR inhibitor, a microtubule stabilizer,
and platinum-based chemotherapy. Loss of ATF4 in PC9 persister cells restored sensitization to
targeted and conventional chemotherapies.

ATF4 and the ISR can promote or inhibit drug-treatment resistance depending on the specific
context. In multiple myeloma, resistance to the proteasome inhibitor bortezomib was mediated
through transcriptional upregulation of MCL-1 by ATF4 [80]. PERK inhibition and promotion of
eIF2α activity through ER stress sensitizes BCL-ABL chronic myeloid leukemia cells to ABL inhi-
bition with imatinib and BRAF-mutant melanoma cells to BRAF inhibition with PLX-4720, respec-
tively [81,82]. Activation of the ISR was cytoprotective in pancreatic cancer cells following
gemcitabine treatment [83]. Poor prognosis and resistance to radiotherapy in triple-negative
breast cancer were associated with the activation of ATF4 [84]. Finally, ATF4 was required to re-
sist the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells [85].

Alternatively, ATF4 may sensitize cancer to specific therapies, including BCL-2 inhibition in AML
[86]. It was also shown that targeting mitochondrial translation with the bacterial 30S ribosome
inhibitor tigecycline is a vulnerability in the colorectal cancer cell line DLD-1 in a manner that is de-
pendent on the activation of ISR [87]. The modulation of therapy responsiveness by ATF4 thus
may depend on the treatment and cancer cell lineage.

Sublethal MOMP and ferroptosis sensitization
Ferroptosis is a programmed cell death pathway genetically andmorphologically distinct from ap-
optosis, necroptosis, and autophagy. It is characterized by depletion of GSH andNADPH and im-
paired GPX4 activity, leading to dysfunctional lipid peroxidase metabolism and a toxic
accumulation of iron-dependent ROS [56]. As discussed earlier, DTPs acquire a dependence
on the lipid peroxidase GPX4. The cytochrome c–HRI–ATF4 axis, discussed earlier, was ob-
served to downregulate genes involved in GSH metabolism and increase ferroptosis sensitivity
in PC9 persister cells [16]. A second study showed that ABT-737 treatment decreased GSH
levels in a caspase-independent manner, which may be explained by the above signaling axis
[88]. ATF4 has previously been shown to induce the expression of ChaC GSH-specific
gamma-glutamylcyclotransferase 1 (CHAC1), which degrades GSH and sensitizes triple-
negative breast cancer to ferroptosis [89]. Accordingly, ATF4-dependent CHAC1 upregulation
was similarly observed in PC9 persister cells compared with parental controls [16]. It is worth
8 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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noting that ATF4 has been reported to play a dual role in ferroptosis regulation [56]. ATF4 can pro-
tect cells against ferroptosis by upregulating heat shock 70-kDa protein 5 (HSPA5) and SLC7A11
expression [90–93]. The conflicting roles of ATF4 in ferroptosis regulation may depend on its spe-
cific activation conditions. Current data suggest that, in cells in the persister state, it appears to
act primarily to sensitize to this form of cell death.

Sublethal MOMP and adaptive mutability
Apoptosis leads to the activation of numerous nucleases to facilitate the degradation of DNA and
RNA in the cell [94]. A hallmark feature of apoptosis is nuclear DNA fragmentation, performed pri-
marily by the dsDNA nuclease CAD. In a healthy cell, CAD activity is restricted through
heterodimerization with the inhibitor of CAD (ICAD) protein. In apoptosis, ICAD is proteolytically
cleaved by caspases. Degradation of ICAD frees CAD, allowing it to homodimerize and activate
its nuclease ability [67]. In cancer cells, CAD was recently discovered to induce genome-wide
DNA breaks secondary to genotoxic therapy in a caspase-independent manner, which inhibited
premature mitotic progression and promoted cell survival, suggesting an additional mechanism
of genomic instability independent of sublethal MOMP [95]. A second DNase that participates
in nuclear DNA fragmentation is endonuclease G (EndoG). EndoG can be released from the
mitochondria to translocate to the nucleus during apoptosis. Apoptotic caspases are required
for the successful release of EndoG from the mitochondria but are not required for its nuclease
activity [96,97].

Sublethal MOMP is a potent inducer of DNA damage and genomic instability. Stimulation of sub-
lethal MOMP in an osteosarcoma cell line, U2OS, and a cervical cancer cell line, HeLa, with both
BH3-mimetic treatment and sublethal expression of the activated BH3-only protein tBID
promoted markers of DNA damage, including phosphorylation of γ-H2AX. These cells exhibited
increased genomic instability, as evidenced by increased micronuclei and gene amplifications
[12]. NSCLC, AML, and PDAC cell lines treated with small-molecule inhibitors targeting
oncogenic driver pathways stimulated sublethal MOMP-dependent DNA damage and activated
ATM [17]. In both contexts, the observed DNA damage depended on caspases and CAD.
Sublethal activation of caspase-3 following low-dose radiotherapy triggered DNA damage
and increased the rate of chromosome aberrations and translocations in MCF10A and
mouse bone marrow cells, respectively. The DNA damage in this context was caspase and
EndoG dependent [13].

Persister cells arising from bacteria and cancer populations display increased rates of genome-
wide mutagenesis [98–100]. Persister cells are proposed to downregulate mismatch repair
(MMR) and homologous recombination (HR) enzymes, resulting in a less efficient DNA damage
repair system. Persisters resulting from targeted therapy of cancer cells show altered expression
of high- to low-fidelity DNA polymerases and express APOBEC3A and APOBEC3B proteins to
further contribute to a hypermutable state [101,102]. It is poorly understood how persister cells
shift to low-fidelity DNA repair pathways, but mTOR [103] and transforming growth factor beta
(TGF-β) [104] have been discovered to modulate DNA repair in specific cancer contexts.
However, it suggests that persisters are a genetically malleable reservoir from which acquired re-
sistance may be cultivated.

Sublethal MOMP generates targetable vulnerabilities in DTPs
Sublethal MOMP alters the fitness landscape of persister cells and creates susceptibility net-
works that can be rationally targeted. A sublethal MOMP gene signature was identified from dif-
ferentially expressed genes (DEGs) in BH3-mimetic-treated wild-type cells versus ATF4−/− and
BAX−/−BAK−/− cells. The ‘apoptosis persister signature’ was found to be significantly elevated
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in RD patient samples compared with treatment-naïve (TN) or progressive disease (PD) sam-
ples, suggesting that sublethal MOMP biology is indeed active in RD and may be therapeuti-
cally targeted [16]. Direct targeting of pathways that control the persister phenotype may
prevent the survival system from being engaged and enhance killing by the primary drug insult.
Alternatively, indirect targeting of the persister state through its downstream dependency hubs
may facilitate synergistic partnerships with standard-of-care therapeutics.

Targeting the generation of the persister state
The ISR, leading to the expression of ATF4, represents a potential target of therapeutic inter-
vention to limit DTP generation. In one study, BRAF-mutant melanoma cells that survived treat-
ment with a BRAF inhibitor displayed increased expression of ATF4, and silencing of ATF4
reduced the numbers of these persisters [58]. In pancreatic cancer mouse models, the ISR in-
hibitor ISRIB increased apoptotic markers and decreased tumor growth when paired with the
chemotherapeutic agent gemcitabine [83]. Pairing the tyrosine kinase inhibitor imatinib with
ISRIB synergistically decreased the engraftment rate of imatinib-resistant chronic myeloid leu-
kemia blasts [105]. Similarly, ISRIB treatment decreased the metastatic ability of pancreatic
cancers in humanized mouse models [83]. Further investigation into ISRIB or its more bioactive
derivative 2bAc [106] as a tool to eliminate persister cells is warranted to understand whether
the ISR is a viable target for the prevention of DTP generation and MRD.

If sublethal MOMP and the activation of HRI is indeed a general mechanism for the induction of
DTPs [16], targeting HRI may be a therapeutic strategy to prevent DTP generation. Although
the options are limited, pharmacological inhibition of HRI can be achieved with a series of
indeno[1,2-c]pyrazoles [107,108]. Downstream transcriptional targets of ATF4 that control
specific features of the persister phenotype may provide added targetable opportunities.

Sublethal MOMP releases several IMS proteins into the cytosol that go on to facilitate numerous
cellular changes. Each of these downstream signaling events may create novel cellular vulnerabil-
ities. An example of this concept is the dependency on DNA damage repair pathways in persister
cells created by CAD activation. NSCLC tumors progressing on EGFR treatment showed ele-
vated phosphorylation of ATM compared with matched, treatment-naïve tumor samples. Fur-
thermore, patients with both an EGFR driver mutation and a rare ATM loss-of-function
mutation showed a significant progression-free survival advantage when treated with first-
generation EGFR inhibitors [17]. In vitro, it was found that EGFR inhibitors activated sublethal
MOMP and induced DNA damage through CAD. Pairing EGFR inhibitors with genetic or pharma-
cological inactivation of ATM eradicated PC9 persister cells. In vivo, NSCLC tumor models dem-
onstrated that the combination treatment with EGFR and ATM inhibitors significantly
outperformed either agent alone [17]. Sublethal MOMP thus indirectly creates a heightened de-
pendence on DDR pathways due to its activation of CAD. As caspases are known to target thou-
sands of proteins for degradation, numerous signaling cascades may become activated or
inactivated in the sublethal MOMP state, which may contribute to as-yet-undefined dependency
networks. Future investigation into sublethal MOMP signaling may reveal additional vulnerabilities
of the persister state.

Targeting the acquired vulnerabilities of the persister state
Heightened sensitivity to ferroptosis is a common feature of DTPs across the cancer lineage. Per-
sister cells were found to exhibit significant depletion of GSH and NADPH and were specifically
vulnerable to both genetic and pharmacological inhibition of GPX4 [16,55]. GPX4 knockout in
BRAF-mutant melanoma tumors prevented the outgrowth of persister cells following treatment
with combination BRAF (dabrafenib) and MEK (trametinib) inhibition in vivo [55]. EMT is a feature
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Outstanding questions
Following MOMP, both IMS and mito-
chondrial matrix contents diffuse into
the cytosol. Are there species beyond
cytochrome c whose release during
sublethal MOMP contributes to the
DTP phenotype? For example, it is ex-
pected that sublethal MOMP may lead
to inflammatory signaling through the
release of mtDNA or mtRNA [115,116]
or nuclear factor kappa B (NF-κB) acti-
vation through the downregulation of
IAP proteins [117].

Does sublethal MOMP engagement
result in the same phenotypic conse-
quences in development and normal
physiology as it does when it is acti-
vated by cytotoxic therapy?

As caspases are known to cleave
hundreds of substrates following
their activation, are there additional
phenotypic manifestations of sublethal
MOMP that depend on caspase activity?

Can sublethal MOMP also have tumor
suppressor activity; for instance,
through cGAS-STING activation?

Is increased apoptotic priming selected
for in cancer cells through its ability to
promote sublethal MOMP?

To what extent is sublethal MOMP re-
sponsible for MRD and for the proper-
ties of the residual cells?

Are there pre-existing transcriptional
states that predispose cells to suble-
thal MOMP and DTP generation, and
are such states associated with devel-
opmental plasticity?

Is there a general, transcriptional
signature associated with cells that
have undergone sublethal MOMP?

Does sublethal MOMP-driven DNA
damage, and subsequent activation
of DNA repair mechanisms, contribute
to the DTP state or accelerate the ac-
quisition of drug resistance in persister
cells; for example, by increasing
mutability?

We understand mitochondrial fusion,
ferroptosis, ISR, and DDR pathways
as rational therapeutic targets in suble-
thal MOMP-induced persister cells.
Are there additional dependencies as-
sociated with sublethal MOMP?
of both persister and drug-resistant states and was discovered to promote a vulnerability to fer-
roptosis. Induction of EMT in epithelial-like cell lines through TGF-β treatment, drug resistance, or
ectopic expression of EMT transcription factors was sufficient to increase their dependence on
GPX4 in vitro and in vivo [109]. These findings suggest that ferroptosis is an attractive target in
persister cells.

Ferroptosis can be induced through cystine depletion, inhibition of the cystine and glutamine
antiporter system Xc−, or inhibition of GPX4. Currently, the availability of specific and bioavail-
able GPX4 inhibitors is limited. Additionally, systemic targeting of GPX4 may lead to undesir-
able off-target effects, including renal failure [110,111], and may be tumor promoting in an
immunocompetent host [112]. Investigation of cystine depletion and system Xc− as therapeu-
tic targets in persister cells has not been evaluated but they may be attractive alternatives to
GPX4 inhibition. SLC7A11 is a subunit of the system Xc− antiporter that is found to be specif-
ically overexpressed in certain cancers, and no developmental defects are observed in
SLC7A11−/− mice [111,113]. Imidazole ketone erastin (IKE) was recently discovered to be a
selective inhibitor of system Xc− and is the first system Xc− inhibitor with favorable in vivo
pharmacological properties. IKE induced tumor-specific ferroptosis in a diffuse large B cell
lymphoma (DLBCL) mouse model and reduced overall tumor burden [114]. Understanding
how persister cells will respond to pharmacological ferroptosis induction in vivo requires
further evaluation.

Concluding remarks
Sublethal cellular stressors activate MOMP and caspases at levels that are nonlethal to the
cancer cell but nevertheless alter its biological state and dependencies considerably. Sublethal
MOMP was identified in both preclinical and clinical models of RD, where it initiated down-
stream signaling events that contribute to the phenotypic properties of DTPs. Stimulation of
the ISR by cytosolic cytochrome c inhibits cellular proliferation, promotes chemoresistance, ac-
tivates EMT, and sensitizes the cell to ferroptosis. MOMP-dependent DNases and CADs intro-
duce DSBs and increase the genomic instability of DTPs. The widespread molecular alterations
initiated by sublethal MOMP come at an exploitable cost to the cell. Sublethal MOMP creates a
state with heightened dependence on ferroptosis, ISR, and DDR pathways that can be specif-
ically targeted to achieve cellular eradication. Both persisters and genetically resistant clones
comprising residual tumors can activate sublethal MOMP [17]. Thus, the impact of sublethal
MOMP on the biology and vulnerabilities of DTP cells may extend to their irreversibly resistant
brethren. This suggests that targeting vulnerabilities secondary to sublethal MOMP may be a
powerful strategy to overcome multiple mechanisms of persistence and resistance (see
Outstanding questions).
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